我想问有哪些数学家为数学做过贡献的。比如发现圆周率,提出过什么猜想。把有的数学家的名字和贡献的东...

作者&投稿:英聪 2025-05-15
数学家的小故事简短

1、陈景润:
陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。

理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。
他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?

2、高斯:
高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。高斯走进教室后,发现教师不在,黑板上写着几道题。高斯以为这些题目是今天的作业题,便把题目记下来。当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。

他的老师异常震惊:“这些可都是数学史上最著名的难题啊,你竟然只花一个晚上就解决了一道?”而高斯解决的这道难题,就是困扰了数学家两千年之久的正十七边形尺规作图问题。那一年,高斯只有19岁!
3、华罗庚:
有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的价格,尖叫道:“怎么这么贵?”。

这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”。
那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
4、拉格朗日:
拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。
拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。

直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。
5、祖冲之:
祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方. 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究.在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。

在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。

祖冲之是世界上第一位将圆周率准确地推算到小数点后七位数值的科学家,并将这一纪录在世界上保持了一千年之久。

  在祖冲之以前,我国在数学方面已经达到世界先进水平,涌现出许多杰出的数学家和优秀的数学著作。早在原始社会末期,“龙山文化”的陶器上已经出现了各种几何图案。商朝时期,已经开始在数学运算中采用十进位制,这是世界上最早的进位制,它的采用大大方便了数学计算。春秋时代成书的《周易》,是世界上第一本研究排列组合的书。到了战国时代,百家争鸣,数学有了进一步的发展,出现了运用至今的“九九”乘法口诀;在几何学方面,已普遍地运用尺规作图,从而促进了几何学的发展。同时,在诸子百家的著作中,也提出了许多有价值的数学理论。例如:墨家学派的经典《墨子》中,有不少地方涉及到几何学上的一些基本问题,对此它都准确地定义,其准确程度与古代西方流行的欧几里德的《几何原本》不相上下。道家学派所著的《庄子》中,提出了极限理论,其中的著名例证:“有一根一尺长的棍子,每天截其一半,那永远也截不完”,至今仍被讲解数列极限所经常引用。

  到了秦汉魏晋之际,随着封建经济的巨大发展,与之密切相关的数学也有了长足的进步,涌现了一大批的数学著作和知名的数学家。其中最主要的著作有《周髀算经》、《九章算术》和《海岛算经》。《周髀算经》成书的年代不晚于公元前一世纪,作者已经不知道了,东汉著名数学家赵君卿为之作过注,其主要成就在于提出了著名的“勾股定理”及采取了较为复杂的分数运算等方面。《九章算术》的成书年代同《周髀算经》大约同时,最初的作者是谁也已不知道了,许多数学家都对此书进行过增订删补,如西汉数学家张苍、耿寿昌、许商、杜忠等,三国时期著名数学家刘徽为之作了注。这部著作集先秦、秦汉时期数学优秀成果之大成,对以后中国古代数学产生了非常深刻的影响。全书分为方田(主要是计算田亩的方法)、少广(主要是开平方和开立方的方法)、商功(主要是计算各种体积,解决筑城、兴修水利等建筑工程中的实际问题)、粟米(主要是计算各种粮食间的换算方法)、差分(主要是等级式的计算方法)、均输(主要是计算征收和运输粮食的方法)、盈虚(主要是统计有关生产收入的问题)、勾股(主要是勾股定理的实际运用方法)等九章,共二百四十六个问题及每个问题的解法。这部书从数学成就上看,首先应该提到的是:其中记载了当时世界上最先进的分数四则运算和比例算法。另外,书中记载的开平方和开立方的方法,实际上就是求解一元二次方程;而为解方程而联立方程组的解法,比欧洲同类算法早出一千五百多年。书中还在世界数学史上第一次提出了负数概念和正负数的加减法运算法则。《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外,朝鲜、日本都曾把《九章算术》作为教科书,其中的某些计算方法,还传到了印度、阿拉伯和欧洲。

  《海岛算经》的作者是三国时期的刘徽。在这部书中,他主要讲述了利用标杆进行两次、三次及至四次测量来解决各种测量数学的问题,其在此方面的造诣之深,远远超越了当时的西方数学家。而这种测量数学,正是地图学的数学基础。

  除了以是三部著作外,较为重要的数学著作还有《孙子算经》、《五曹算经》、《夏侯阳算经》等。

  祖冲之经过刻苦钻研,继承和发展了前辈科学家的优秀成果。他对于圆周率的研究,就是他对于我国乃至世界的一个突出贡献。祖冲之对圆周率数值的精确推算值,用他的名字被命名为“祖冲之圆周率”,简称“祖率”。

  什么是圆周率呢?圆有它的圆周和圆心,从圆周任意一点到圆心的距离称为半径,半径加倍就是直径。直径是一条经过圆心的线段,圆周是一条弧线,弧线是直线的多少倍,在数学上叫做圆周率。简单说,圆周率就是圆的周长与它直径之间的比,它是一个常数,用希腊字母“π”来表示。在天文历法方面和生产实践当中,凡是牵涉到圆的一切问题,都要使用圆周率来推算。

  如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。我国古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。西汉末年刘歆在为王莽设计制作圆形铜斛(一种量器)的过程中,发现直径为一、圆周为三的古率过于粗略,经过进一步的推算,求得圆周率的数值为3.1547。东汉著名科学家张衡推算出的圆周率值为3.162。三国时,数学家王蕃推算出的圆周率数值为3.155。魏晋之际的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术。他设圆的半径为1,把圆周六等分,作圆的内接正六边形,用勾股定理求出这个内接正六边形的周长;然后依次作内接十二边形,二十四边形……,至圆内接一百九十二边形时,得出它的边长和为6.282048,而圆内接正多边形的边数越多,它的边长就越接近圆的实际周长,所以此时圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。在割圆术中,刘徽已经认识到了现代数学中的极限概念。他所创立的割圆木,是探求圆周率数值的过程中的重大突破。后人为纪念刘徽的这一功绩,把他求得的圆周率数值称为“徽率”或称“徽术”。

  刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延  3.14。以上的科学家都为圆周率的研究推算做出了很大贡献,可是和祖冲之的圆周率比较起来,就逊色多了。

  祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间;   来表示。他成为世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。祖冲之提出的“密率”,也是直到一千年以后,才由德国  称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的。这是有意的捏造。记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方面卓越的成就。

  那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了刘徽所创立和首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。

  祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大   大不到千万分之一,它们的提出,大大方便了计算和实际应用。

  要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。

  这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年,苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为“祖冲之环形山”。

  祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过度量衡,并用最新的圆周率成果修正古代的量器容积的计算。

  古代有一种量器叫做“ (釜)”,一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。他还重新计算了汉朝刘歆所造的“律嘉量”(另一种量器,与上面提到的 都是类似于现在我们所用的“升”等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值。

  以后,人们制造量器时就采用了祖冲之的“祖率”数值。

中国数学家
祖冲之(公元429年—500年),他已推算出3.1415926<π<3.1415927.也就是π≈3.1415926…,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示π的近似值.即22 7及355 113,分别称为π的约率和密度.

陈景润攻克巴赫尔猜想
丘成桐证明了卡拉比猜想
华罗庚,被誉为“中国现代数学之父“是中国解析数论、矩阵几何学、典型群、自守函数论等多方面研究的创始人和开拓者

外国:
柯西:很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...

笛卡尔:发明了直角坐标系,是解析几何之父
牛顿和莱布尼茨——微积分的创始人。他们总结了前人的工作,经过各自独立的研究,掌握了微分法和积分法,并洞悉了二者之间的联系。因而将他们两人并列为微积分的创始人是完全正确的,尽管牛顿的研究比莱布尼茨早 10 年,但论文的发表要晚 3 年
欧拉,第一个使用“函数”一词来描述包含各种参数的表达式的人欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等等

欧拉——分析学
牛顿——微积分
阿基米德:几何学方面:阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。

高斯:独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
  1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。1801年,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。

欧几里得:《原本》中除了几何学以外还有大量比例和数论的内容.此外,《原本》中从简单的公理及定义通过演绎推理得出命题结论的方式成为以后数学研究的基本模式.

圆周率是祖冲之,还有哥德巴赫猜想,费马大定律,阿基米德杠杆原理,牛顿发明了积分,耐普尔发明了对数,欧拉,笛卡尔创立坐标系,诺伊曼开辟了数学的一个新分支------对策论

欧拉——分析学
牛顿——微积分
阿基米德:几何学方面:阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。

高斯:独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。
  1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。1801年,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。

欧几里得:《原本》中除了几何学以外还有大量比例和数论的内容.此外,《原本》中从简单的公理及定义通过演绎推理得出命题结论的方式成为以后数学研究的基本模式.

圆周率是祖冲之,还有哥德巴赫猜想,费马大定律,阿基米德杠杆原理,牛顿发明了积分,耐普尔发明了对数,欧拉,笛卡尔创立坐标系,诺伊曼开辟了数学的一个新分支------对策论


你是否需要了解?

十位中外数学家生平事迹,急!
这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。 3.欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,...

著名数学家有哪些
三、牛顿(Newton)。他是英国物理学家和数学家,对微积分学、光学和力学做出了重要贡献。牛顿的著作《自然哲学的数学原理》是科学史上的重要里程碑之一,为经典力学的发展奠定了坚实基础。四、欧拉(Leonhard Euler)。他是瑞士数学家,对数学各领域都有深刻贡献,包括数论、几何学、概率论等。欧拉的研究...

数论研究方面的数学家有哪些
数学家在推动数学理论的发展中发挥着至关重要的作用。他们不断探索新的数学领域,通过深入研究提出新的理论、定理和证明。数学家的创新精神是数学进步的源泉,他们的工作为解决现实问题提供了工具和框架,也启发了其他领域的科学家和工程师。2、数学在解决问题中的应用 数学家不仅在理论上有所贡献,还致力...

我国历代著名数学家有哪些
庄圻泰致力于复分析研究,在亚纯函数的值分布与正规族理论方面取得了显著成果。许宝騄在中国开创了概率论、数理统计的教学与研究工作,段学复是中国群表示论的奠基人之一。田方增为泛函分析研究做出了积极贡献。其实,中国还有许多优秀的数学家,他们的贡献同样值得我们铭记。

请详细列举中国数学史上三位数学家的功绩?
2.2 祖冲之(429-500年),范阳遒县(今河北涞源)人,活跃于南朝的宋、齐两代,曾做过一些小官,但他却成为历代为数很少能名列正史的数学家之一。祖冲之:“迟疾之率,非出神怪,有形可检,有数可推。”祖冲之的著作《缀术》,取得了圆周率的计算和球体体积的推导两大数学成就。祖冲之关于圆周率的贡献记载在《隋书》(...

数学界最牛的数学家有哪些?
数学史上有四位被誉为“天王”的数学家,他们的成就对数学的发展产生了深远的影响。他们是阿基米德、牛顿、欧拉和高斯。阿基米德是古希腊时期的数学家,他的几何研究为后世奠定了基础。他提出了阿基米德螺旋,这是他对数学的一大贡献。他还保存了“数”的种子,预见了极微分割的概念,为微积分的诞生埋下...

数学家有哪些贡献贡献?
现代微分几何之父——陈省身 分形几何之父——芒德勃罗 解析几何之父——笛卡尔 数学成果 中国古代算术的许多研究成果里面包含了一些后来西方数学的思想方法,近代也有一些数学研究成果是以华人数学家命名的。这里列举中国近现代数学家的一些重要的贡献。李善兰在级数求和方面的研究成果,被命名为“李善兰恒等...

我国十大著名数学家有哪些
6. 陈建功教授,我国函数论研究的先驱,最早将现代西方数学引入中国,对函数论多领域有深远贡献。7. 吴文俊教授,国家最高科技奖首届得主,对拓扑学有重大贡献,创立了“吴示性类”和“吴示嵌类”,并提出了著名的“吴公式”。8. 陶哲轩教授,当代最知名的华裔数学家之一,任教于美国加州大学洛杉矶分校...

谁能告诉我哪个数学家在数学发展史上做出了比较卓越的贡献?可以输入多 ...
按照时间先后,最伟大的是这几个:欧几里德:奠定了公理-演绎体系,影响至今;阿基米德:第一个将抽象理论与工程实践紧密结合;牛顿:发明了微积分,让数学成为科学研究的基础工具;高斯:遍及纯数学和应用数学各个领域;庞加莱:最后一位数学通才,在多个领域做出了开创性的贡献;希尔伯特:数学界的亚历山大...

著名的数学家有哪些
著名的数学家有:欧拉 欧拉是瑞士出生的数学家和物理学家。他被认为是史上最伟大的数学家之一,对于几何和力学作出了重要的贡献。欧拉非常擅长推理分析的能力和对数学问题做创新的快速反映是他闻名的特征。此外,欧拉写了很多本流行的书籍帮助教育公众对于微积分,几何学和天文学的理解。欧拉以其卓越的才华...